This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to the negative of an integer power. (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnegz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) | |
| 2 | expneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ∈ ℂ → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℝ ) → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 5 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → 𝐴 ∈ ℂ ) | |
| 6 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) | |
| 7 | 6 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℂ ) |
| 8 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → - 𝑁 ∈ ℕ0 ) | |
| 9 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 1 / ( 𝐴 ↑ 𝑁 ) ) = ( 1 / ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) ) |
| 12 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) | |
| 13 | 12 | ad2ant2rl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) |
| 14 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → 𝐴 ≠ 0 ) | |
| 15 | 8 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → - 𝑁 ∈ ℤ ) |
| 16 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) | |
| 17 | 5 14 15 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) |
| 18 | 13 17 | recrecd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 1 / ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( 𝐴 ↑ - 𝑁 ) ) |
| 19 | 11 18 | eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |
| 20 | 19 | expr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℝ ) → ( - 𝑁 ∈ ℕ0 → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 21 | 4 20 | jaod | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℝ ) → ( ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 22 | 21 | expimpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 23 | 1 22 | biimtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑁 ∈ ℤ → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 24 | 23 | 3impia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ - 𝑁 ) = ( 1 / ( 𝐴 ↑ 𝑁 ) ) ) |