This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcllem.1 | |- F C_ CC |
|
| expcllem.2 | |- ( ( x e. F /\ y e. F ) -> ( x x. y ) e. F ) |
||
| expcllem.3 | |- 1 e. F |
||
| expcl2lem.4 | |- ( ( x e. F /\ x =/= 0 ) -> ( 1 / x ) e. F ) |
||
| Assertion | expcl2lem | |- ( ( A e. F /\ A =/= 0 /\ B e. ZZ ) -> ( A ^ B ) e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcllem.1 | |- F C_ CC |
|
| 2 | expcllem.2 | |- ( ( x e. F /\ y e. F ) -> ( x x. y ) e. F ) |
|
| 3 | expcllem.3 | |- 1 e. F |
|
| 4 | expcl2lem.4 | |- ( ( x e. F /\ x =/= 0 ) -> ( 1 / x ) e. F ) |
|
| 5 | elznn0nn | |- ( B e. ZZ <-> ( B e. NN0 \/ ( B e. RR /\ -u B e. NN ) ) ) |
|
| 6 | 1 2 3 | expcllem | |- ( ( A e. F /\ B e. NN0 ) -> ( A ^ B ) e. F ) |
| 7 | 6 | ex | |- ( A e. F -> ( B e. NN0 -> ( A ^ B ) e. F ) ) |
| 8 | 7 | adantr | |- ( ( A e. F /\ A =/= 0 ) -> ( B e. NN0 -> ( A ^ B ) e. F ) ) |
| 9 | simpll | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> A e. F ) |
|
| 10 | 1 9 | sselid | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> A e. CC ) |
| 11 | simprl | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> B e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> B e. CC ) |
| 13 | nnnn0 | |- ( -u B e. NN -> -u B e. NN0 ) |
|
| 14 | 13 | ad2antll | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> -u B e. NN0 ) |
| 15 | expneg2 | |- ( ( A e. CC /\ B e. CC /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
|
| 16 | 10 12 14 15 | syl3anc | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
| 17 | difss | |- ( F \ { 0 } ) C_ F |
|
| 18 | simpl | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A e. F /\ A =/= 0 ) ) |
|
| 19 | eldifsn | |- ( A e. ( F \ { 0 } ) <-> ( A e. F /\ A =/= 0 ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> A e. ( F \ { 0 } ) ) |
| 21 | 17 1 | sstri | |- ( F \ { 0 } ) C_ CC |
| 22 | 17 | sseli | |- ( x e. ( F \ { 0 } ) -> x e. F ) |
| 23 | 17 | sseli | |- ( y e. ( F \ { 0 } ) -> y e. F ) |
| 24 | 22 23 2 | syl2an | |- ( ( x e. ( F \ { 0 } ) /\ y e. ( F \ { 0 } ) ) -> ( x x. y ) e. F ) |
| 25 | eldifsn | |- ( x e. ( F \ { 0 } ) <-> ( x e. F /\ x =/= 0 ) ) |
|
| 26 | 1 | sseli | |- ( x e. F -> x e. CC ) |
| 27 | 26 | anim1i | |- ( ( x e. F /\ x =/= 0 ) -> ( x e. CC /\ x =/= 0 ) ) |
| 28 | 25 27 | sylbi | |- ( x e. ( F \ { 0 } ) -> ( x e. CC /\ x =/= 0 ) ) |
| 29 | eldifsn | |- ( y e. ( F \ { 0 } ) <-> ( y e. F /\ y =/= 0 ) ) |
|
| 30 | 1 | sseli | |- ( y e. F -> y e. CC ) |
| 31 | 30 | anim1i | |- ( ( y e. F /\ y =/= 0 ) -> ( y e. CC /\ y =/= 0 ) ) |
| 32 | 29 31 | sylbi | |- ( y e. ( F \ { 0 } ) -> ( y e. CC /\ y =/= 0 ) ) |
| 33 | mulne0 | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
|
| 34 | 28 32 33 | syl2an | |- ( ( x e. ( F \ { 0 } ) /\ y e. ( F \ { 0 } ) ) -> ( x x. y ) =/= 0 ) |
| 35 | eldifsn | |- ( ( x x. y ) e. ( F \ { 0 } ) <-> ( ( x x. y ) e. F /\ ( x x. y ) =/= 0 ) ) |
|
| 36 | 24 34 35 | sylanbrc | |- ( ( x e. ( F \ { 0 } ) /\ y e. ( F \ { 0 } ) ) -> ( x x. y ) e. ( F \ { 0 } ) ) |
| 37 | ax-1ne0 | |- 1 =/= 0 |
|
| 38 | eldifsn | |- ( 1 e. ( F \ { 0 } ) <-> ( 1 e. F /\ 1 =/= 0 ) ) |
|
| 39 | 3 37 38 | mpbir2an | |- 1 e. ( F \ { 0 } ) |
| 40 | 21 36 39 | expcllem | |- ( ( A e. ( F \ { 0 } ) /\ -u B e. NN0 ) -> ( A ^ -u B ) e. ( F \ { 0 } ) ) |
| 41 | 20 14 40 | syl2anc | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ -u B ) e. ( F \ { 0 } ) ) |
| 42 | 17 41 | sselid | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ -u B ) e. F ) |
| 43 | eldifsn | |- ( ( A ^ -u B ) e. ( F \ { 0 } ) <-> ( ( A ^ -u B ) e. F /\ ( A ^ -u B ) =/= 0 ) ) |
|
| 44 | 41 43 | sylib | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( ( A ^ -u B ) e. F /\ ( A ^ -u B ) =/= 0 ) ) |
| 45 | 44 | simprd | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ -u B ) =/= 0 ) |
| 46 | neeq1 | |- ( x = ( A ^ -u B ) -> ( x =/= 0 <-> ( A ^ -u B ) =/= 0 ) ) |
|
| 47 | oveq2 | |- ( x = ( A ^ -u B ) -> ( 1 / x ) = ( 1 / ( A ^ -u B ) ) ) |
|
| 48 | 47 | eleq1d | |- ( x = ( A ^ -u B ) -> ( ( 1 / x ) e. F <-> ( 1 / ( A ^ -u B ) ) e. F ) ) |
| 49 | 46 48 | imbi12d | |- ( x = ( A ^ -u B ) -> ( ( x =/= 0 -> ( 1 / x ) e. F ) <-> ( ( A ^ -u B ) =/= 0 -> ( 1 / ( A ^ -u B ) ) e. F ) ) ) |
| 50 | 4 | ex | |- ( x e. F -> ( x =/= 0 -> ( 1 / x ) e. F ) ) |
| 51 | 49 50 | vtoclga | |- ( ( A ^ -u B ) e. F -> ( ( A ^ -u B ) =/= 0 -> ( 1 / ( A ^ -u B ) ) e. F ) ) |
| 52 | 42 45 51 | sylc | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( 1 / ( A ^ -u B ) ) e. F ) |
| 53 | 16 52 | eqeltrd | |- ( ( ( A e. F /\ A =/= 0 ) /\ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ B ) e. F ) |
| 54 | 53 | ex | |- ( ( A e. F /\ A =/= 0 ) -> ( ( B e. RR /\ -u B e. NN ) -> ( A ^ B ) e. F ) ) |
| 55 | 8 54 | jaod | |- ( ( A e. F /\ A =/= 0 ) -> ( ( B e. NN0 \/ ( B e. RR /\ -u B e. NN ) ) -> ( A ^ B ) e. F ) ) |
| 56 | 5 55 | biimtrid | |- ( ( A e. F /\ A =/= 0 ) -> ( B e. ZZ -> ( A ^ B ) e. F ) ) |
| 57 | 56 | 3impia | |- ( ( A e. F /\ A =/= 0 /\ B e. ZZ ) -> ( A ^ B ) e. F ) |