This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-opab . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-opab | ⊢ ( 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } → 3 𝑅 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | ⊢ 3 ∈ ℂ | |
| 2 | 4cn | ⊢ 4 ∈ ℂ | |
| 3 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 4 | 1 | elexi | ⊢ 3 ∈ V |
| 5 | 2 | elexi | ⊢ 4 ∈ V |
| 6 | eleq1 | ⊢ ( 𝑥 = 3 → ( 𝑥 ∈ ℂ ↔ 3 ∈ ℂ ) ) | |
| 7 | oveq1 | ⊢ ( 𝑥 = 3 → ( 𝑥 + 1 ) = ( 3 + 1 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 3 → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( 3 + 1 ) = 𝑦 ) ) |
| 9 | 6 8 | 3anbi13d | ⊢ ( 𝑥 = 3 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) ↔ ( 3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 3 + 1 ) = 𝑦 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑦 = 4 → ( 𝑦 ∈ ℂ ↔ 4 ∈ ℂ ) ) | |
| 11 | eqeq2 | ⊢ ( 𝑦 = 4 → ( ( 3 + 1 ) = 𝑦 ↔ ( 3 + 1 ) = 4 ) ) | |
| 12 | 10 11 | 3anbi23d | ⊢ ( 𝑦 = 4 → ( ( 3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 3 + 1 ) = 𝑦 ) ↔ ( 3 ∈ ℂ ∧ 4 ∈ ℂ ∧ ( 3 + 1 ) = 4 ) ) ) |
| 13 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } | |
| 14 | 4 5 9 12 13 | brab | ⊢ ( 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 ↔ ( 3 ∈ ℂ ∧ 4 ∈ ℂ ∧ ( 3 + 1 ) = 4 ) ) |
| 15 | 1 2 3 14 | mpbir3an | ⊢ 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 |
| 16 | breq | ⊢ ( 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } → ( 3 𝑅 4 ↔ 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 ) ) | |
| 17 | 15 16 | mpbiri | ⊢ ( 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } → 3 𝑅 4 ) |