This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-opab . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-opab | |- ( R = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } -> 3 R 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn | |- 3 e. CC |
|
| 2 | 4cn | |- 4 e. CC |
|
| 3 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 4 | 1 | elexi | |- 3 e. _V |
| 5 | 2 | elexi | |- 4 e. _V |
| 6 | eleq1 | |- ( x = 3 -> ( x e. CC <-> 3 e. CC ) ) |
|
| 7 | oveq1 | |- ( x = 3 -> ( x + 1 ) = ( 3 + 1 ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = 3 -> ( ( x + 1 ) = y <-> ( 3 + 1 ) = y ) ) |
| 9 | 6 8 | 3anbi13d | |- ( x = 3 -> ( ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) <-> ( 3 e. CC /\ y e. CC /\ ( 3 + 1 ) = y ) ) ) |
| 10 | eleq1 | |- ( y = 4 -> ( y e. CC <-> 4 e. CC ) ) |
|
| 11 | eqeq2 | |- ( y = 4 -> ( ( 3 + 1 ) = y <-> ( 3 + 1 ) = 4 ) ) |
|
| 12 | 10 11 | 3anbi23d | |- ( y = 4 -> ( ( 3 e. CC /\ y e. CC /\ ( 3 + 1 ) = y ) <-> ( 3 e. CC /\ 4 e. CC /\ ( 3 + 1 ) = 4 ) ) ) |
| 13 | eqid | |- { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } |
|
| 14 | 4 5 9 12 13 | brab | |- ( 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 <-> ( 3 e. CC /\ 4 e. CC /\ ( 3 + 1 ) = 4 ) ) |
| 15 | 1 2 3 14 | mpbir3an | |- 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 |
| 16 | breq | |- ( R = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } -> ( 3 R 4 <-> 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 ) ) |
|
| 17 | 15 16 | mpbiri | |- ( R = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } -> 3 R 4 ) |