This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by BJ, 24-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-ind-dvds | ⊢ ( 𝑁 ∈ ℕ0 → 3 ∥ ( ( 4 ↑ 𝑁 ) + 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑘 = 0 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 0 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑘 = 0 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 0 ) + 2 ) ) |
| 3 | 2 | breq2d | ⊢ ( 𝑘 = 0 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 0 ) + 2 ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑛 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 𝑛 ) + 2 ) ) |
| 6 | 5 | breq2d | ⊢ ( 𝑘 = 𝑛 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 4 ↑ 𝑘 ) = ( 4 ↑ ( 𝑛 + 1 ) ) ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) |
| 9 | 8 | breq2d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑘 = 𝑁 → ( 4 ↑ 𝑘 ) = ( 4 ↑ 𝑁 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑘 = 𝑁 → ( ( 4 ↑ 𝑘 ) + 2 ) = ( ( 4 ↑ 𝑁 ) + 2 ) ) |
| 12 | 11 | breq2d | ⊢ ( 𝑘 = 𝑁 → ( 3 ∥ ( ( 4 ↑ 𝑘 ) + 2 ) ↔ 3 ∥ ( ( 4 ↑ 𝑁 ) + 2 ) ) ) |
| 13 | 3z | ⊢ 3 ∈ ℤ | |
| 14 | iddvds | ⊢ ( 3 ∈ ℤ → 3 ∥ 3 ) | |
| 15 | 13 14 | ax-mp | ⊢ 3 ∥ 3 |
| 16 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 17 | 16 | numexp0 | ⊢ ( 4 ↑ 0 ) = 1 |
| 18 | 17 | oveq1i | ⊢ ( ( 4 ↑ 0 ) + 2 ) = ( 1 + 2 ) |
| 19 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 20 | 18 19 | eqtri | ⊢ ( ( 4 ↑ 0 ) + 2 ) = 3 |
| 21 | 15 20 | breqtrri | ⊢ 3 ∥ ( ( 4 ↑ 0 ) + 2 ) |
| 22 | 13 | a1i | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∈ ℤ ) |
| 23 | 16 | a1i | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 4 ∈ ℕ0 ) |
| 24 | simpl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 𝑛 ∈ ℕ0 ) | |
| 25 | 23 24 | nn0expcld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℕ0 ) |
| 26 | 25 | nn0zd | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 27 | 2z | ⊢ 2 ∈ ℤ | |
| 28 | 27 | a1i | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 2 ∈ ℤ ) |
| 29 | 26 28 | zaddcld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ 𝑛 ) + 2 ) ∈ ℤ ) |
| 30 | 4z | ⊢ 4 ∈ ℤ | |
| 31 | 30 | a1i | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 4 ∈ ℤ ) |
| 32 | 29 31 | zmulcld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) ∈ ℤ ) |
| 33 | 22 28 | zmulcld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 3 · 2 ) ∈ ℤ ) |
| 34 | 16 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 4 ∈ ℕ0 ) |
| 35 | id | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) | |
| 36 | 34 35 | nn0expcld | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℕ0 ) |
| 37 | 36 | nn0zd | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( 4 ↑ 𝑛 ) ∈ ℤ ) |
| 39 | 38 28 | zaddcld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ 𝑛 ) + 2 ) ∈ ℤ ) |
| 40 | simpr | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) | |
| 41 | 22 39 31 40 | dvdsmultr1d | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) ) |
| 42 | dvdsmul1 | ⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ) → 3 ∥ ( 3 · 2 ) ) | |
| 43 | 13 27 42 | mp2an | ⊢ 3 ∥ ( 3 · 2 ) |
| 44 | 43 | a1i | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( 3 · 2 ) ) |
| 45 | 22 32 33 41 44 | dvds2subd | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 46 | 36 | nn0cnd | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ 𝑛 ) ∈ ℂ ) |
| 47 | 2cnd | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 48 | 4cn | ⊢ 4 ∈ ℂ | |
| 49 | 48 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 4 ∈ ℂ ) |
| 50 | 46 47 49 | adddird | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) ) |
| 51 | 50 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 2 · 3 ) ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) ) |
| 52 | 3cn | ⊢ 3 ∈ ℂ | |
| 53 | 2cn | ⊢ 2 ∈ ℂ | |
| 54 | 52 53 | mulcomi | ⊢ ( 3 · 2 ) = ( 2 · 3 ) |
| 55 | 54 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → ( 3 · 2 ) = ( 2 · 3 ) ) |
| 56 | 55 | oveq2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 2 · 3 ) ) ) |
| 57 | 49 35 | expp1d | ⊢ ( 𝑛 ∈ ℕ0 → ( 4 ↑ ( 𝑛 + 1 ) ) = ( ( 4 ↑ 𝑛 ) · 4 ) ) |
| 58 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 59 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 60 | 52 58 59 | addcomli | ⊢ ( 1 + 3 ) = 4 |
| 61 | 60 | eqcomi | ⊢ 4 = ( 1 + 3 ) |
| 62 | 58 52 61 | mvrraddi | ⊢ ( 4 − 3 ) = 1 |
| 63 | 62 | oveq2i | ⊢ ( 2 · ( 4 − 3 ) ) = ( 2 · 1 ) |
| 64 | 53 48 52 | subdii | ⊢ ( 2 · ( 4 − 3 ) ) = ( ( 2 · 4 ) − ( 2 · 3 ) ) |
| 65 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 66 | 63 64 65 | 3eqtr3ri | ⊢ 2 = ( ( 2 · 4 ) − ( 2 · 3 ) ) |
| 67 | 66 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 2 = ( ( 2 · 4 ) − ( 2 · 3 ) ) ) |
| 68 | 57 67 | oveq12d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 2 · 4 ) − ( 2 · 3 ) ) ) ) |
| 69 | 46 49 | mulcld | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ 𝑛 ) · 4 ) ∈ ℂ ) |
| 70 | 47 49 | mulcld | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 4 ) ∈ ℂ ) |
| 71 | 52 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 3 ∈ ℂ ) |
| 72 | 47 71 | mulcld | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 3 ) ∈ ℂ ) |
| 73 | 69 70 72 | addsubassd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) = ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( ( 2 · 4 ) − ( 2 · 3 ) ) ) ) |
| 74 | 68 73 | eqtr4d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) · 4 ) + ( 2 · 4 ) ) − ( 2 · 3 ) ) ) |
| 75 | 51 56 74 | 3eqtr4rd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 76 | 75 | adantr | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) = ( ( ( ( 4 ↑ 𝑛 ) + 2 ) · 4 ) − ( 3 · 2 ) ) ) |
| 77 | 45 76 | breqtrrd | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) |
| 78 | 77 | ex | ⊢ ( 𝑛 ∈ ℕ0 → ( 3 ∥ ( ( 4 ↑ 𝑛 ) + 2 ) → 3 ∥ ( ( 4 ↑ ( 𝑛 + 1 ) ) + 2 ) ) ) |
| 79 | 3 6 9 12 21 78 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → 3 ∥ ( ( 4 ↑ 𝑁 ) + 2 ) ) |