This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by BJ, 24-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-ind-dvds | |- ( N e. NN0 -> 3 || ( ( 4 ^ N ) + 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( k = 0 -> ( 4 ^ k ) = ( 4 ^ 0 ) ) |
|
| 2 | 1 | oveq1d | |- ( k = 0 -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ 0 ) + 2 ) ) |
| 3 | 2 | breq2d | |- ( k = 0 -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ 0 ) + 2 ) ) ) |
| 4 | oveq2 | |- ( k = n -> ( 4 ^ k ) = ( 4 ^ n ) ) |
|
| 5 | 4 | oveq1d | |- ( k = n -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ n ) + 2 ) ) |
| 6 | 5 | breq2d | |- ( k = n -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ n ) + 2 ) ) ) |
| 7 | oveq2 | |- ( k = ( n + 1 ) -> ( 4 ^ k ) = ( 4 ^ ( n + 1 ) ) ) |
|
| 8 | 7 | oveq1d | |- ( k = ( n + 1 ) -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ ( n + 1 ) ) + 2 ) ) |
| 9 | 8 | breq2d | |- ( k = ( n + 1 ) -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) |
| 10 | oveq2 | |- ( k = N -> ( 4 ^ k ) = ( 4 ^ N ) ) |
|
| 11 | 10 | oveq1d | |- ( k = N -> ( ( 4 ^ k ) + 2 ) = ( ( 4 ^ N ) + 2 ) ) |
| 12 | 11 | breq2d | |- ( k = N -> ( 3 || ( ( 4 ^ k ) + 2 ) <-> 3 || ( ( 4 ^ N ) + 2 ) ) ) |
| 13 | 3z | |- 3 e. ZZ |
|
| 14 | iddvds | |- ( 3 e. ZZ -> 3 || 3 ) |
|
| 15 | 13 14 | ax-mp | |- 3 || 3 |
| 16 | 4nn0 | |- 4 e. NN0 |
|
| 17 | 16 | numexp0 | |- ( 4 ^ 0 ) = 1 |
| 18 | 17 | oveq1i | |- ( ( 4 ^ 0 ) + 2 ) = ( 1 + 2 ) |
| 19 | 1p2e3 | |- ( 1 + 2 ) = 3 |
|
| 20 | 18 19 | eqtri | |- ( ( 4 ^ 0 ) + 2 ) = 3 |
| 21 | 15 20 | breqtrri | |- 3 || ( ( 4 ^ 0 ) + 2 ) |
| 22 | 13 | a1i | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 e. ZZ ) |
| 23 | 16 | a1i | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. NN0 ) |
| 24 | simpl | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> n e. NN0 ) |
|
| 25 | 23 24 | nn0expcld | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. NN0 ) |
| 26 | 25 | nn0zd | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) |
| 27 | 2z | |- 2 e. ZZ |
|
| 28 | 27 | a1i | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 2 e. ZZ ) |
| 29 | 26 28 | zaddcld | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) |
| 30 | 4z | |- 4 e. ZZ |
|
| 31 | 30 | a1i | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 4 e. ZZ ) |
| 32 | 29 31 | zmulcld | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) e. ZZ ) |
| 33 | 22 28 | zmulcld | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 3 x. 2 ) e. ZZ ) |
| 34 | 16 | a1i | |- ( n e. NN0 -> 4 e. NN0 ) |
| 35 | id | |- ( n e. NN0 -> n e. NN0 ) |
|
| 36 | 34 35 | nn0expcld | |- ( n e. NN0 -> ( 4 ^ n ) e. NN0 ) |
| 37 | 36 | nn0zd | |- ( n e. NN0 -> ( 4 ^ n ) e. ZZ ) |
| 38 | 37 | adantr | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( 4 ^ n ) e. ZZ ) |
| 39 | 38 28 | zaddcld | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ n ) + 2 ) e. ZZ ) |
| 40 | simpr | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ n ) + 2 ) ) |
|
| 41 | 22 39 31 40 | dvdsmultr1d | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( 4 ^ n ) + 2 ) x. 4 ) ) |
| 42 | dvdsmul1 | |- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> 3 || ( 3 x. 2 ) ) |
|
| 43 | 13 27 42 | mp2an | |- 3 || ( 3 x. 2 ) |
| 44 | 43 | a1i | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( 3 x. 2 ) ) |
| 45 | 22 32 33 41 44 | dvds2subd | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
| 46 | 36 | nn0cnd | |- ( n e. NN0 -> ( 4 ^ n ) e. CC ) |
| 47 | 2cnd | |- ( n e. NN0 -> 2 e. CC ) |
|
| 48 | 4cn | |- 4 e. CC |
|
| 49 | 48 | a1i | |- ( n e. NN0 -> 4 e. CC ) |
| 50 | 46 47 49 | adddird | |- ( n e. NN0 -> ( ( ( 4 ^ n ) + 2 ) x. 4 ) = ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) ) |
| 51 | 50 | oveq1d | |- ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) |
| 52 | 3cn | |- 3 e. CC |
|
| 53 | 2cn | |- 2 e. CC |
|
| 54 | 52 53 | mulcomi | |- ( 3 x. 2 ) = ( 2 x. 3 ) |
| 55 | 54 | a1i | |- ( n e. NN0 -> ( 3 x. 2 ) = ( 2 x. 3 ) ) |
| 56 | 55 | oveq2d | |- ( n e. NN0 -> ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 2 x. 3 ) ) ) |
| 57 | 49 35 | expp1d | |- ( n e. NN0 -> ( 4 ^ ( n + 1 ) ) = ( ( 4 ^ n ) x. 4 ) ) |
| 58 | ax-1cn | |- 1 e. CC |
|
| 59 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 60 | 52 58 59 | addcomli | |- ( 1 + 3 ) = 4 |
| 61 | 60 | eqcomi | |- 4 = ( 1 + 3 ) |
| 62 | 58 52 61 | mvrraddi | |- ( 4 - 3 ) = 1 |
| 63 | 62 | oveq2i | |- ( 2 x. ( 4 - 3 ) ) = ( 2 x. 1 ) |
| 64 | 53 48 52 | subdii | |- ( 2 x. ( 4 - 3 ) ) = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) |
| 65 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 66 | 63 64 65 | 3eqtr3ri | |- 2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) |
| 67 | 66 | a1i | |- ( n e. NN0 -> 2 = ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) |
| 68 | 57 67 | oveq12d | |- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) |
| 69 | 46 49 | mulcld | |- ( n e. NN0 -> ( ( 4 ^ n ) x. 4 ) e. CC ) |
| 70 | 47 49 | mulcld | |- ( n e. NN0 -> ( 2 x. 4 ) e. CC ) |
| 71 | 52 | a1i | |- ( n e. NN0 -> 3 e. CC ) |
| 72 | 47 71 | mulcld | |- ( n e. NN0 -> ( 2 x. 3 ) e. CC ) |
| 73 | 69 70 72 | addsubassd | |- ( n e. NN0 -> ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) = ( ( ( 4 ^ n ) x. 4 ) + ( ( 2 x. 4 ) - ( 2 x. 3 ) ) ) ) |
| 74 | 68 73 | eqtr4d | |- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) x. 4 ) + ( 2 x. 4 ) ) - ( 2 x. 3 ) ) ) |
| 75 | 51 56 74 | 3eqtr4rd | |- ( n e. NN0 -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
| 76 | 75 | adantr | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> ( ( 4 ^ ( n + 1 ) ) + 2 ) = ( ( ( ( 4 ^ n ) + 2 ) x. 4 ) - ( 3 x. 2 ) ) ) |
| 77 | 45 76 | breqtrrd | |- ( ( n e. NN0 /\ 3 || ( ( 4 ^ n ) + 2 ) ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) |
| 78 | 77 | ex | |- ( n e. NN0 -> ( 3 || ( ( 4 ^ n ) + 2 ) -> 3 || ( ( 4 ^ ( n + 1 ) ) + 2 ) ) ) |
| 79 | 3 6 9 12 21 78 | nn0ind | |- ( N e. NN0 -> 3 || ( ( 4 ^ N ) + 2 ) ) |