This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (common vertices) of two adjacent edges in an s-walk of edges. (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | ewlkinedg | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | ewlkprop | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 3 | fvoveq1 | ⊢ ( 𝑘 = 𝐾 → ( 𝐹 ‘ ( 𝑘 − 1 ) ) = ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ) |
| 5 | 2fveq3 | ⊢ ( 𝑘 = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) | |
| 6 | 4 5 | ineq12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) |
| 8 | 7 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
| 9 | 8 | rspccv | ⊢ ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ ℕ0* ) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) → ( 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐹 ∈ ( 𝐺 EdgWalks 𝑆 ) ∧ 𝐾 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝐾 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝐾 ) ) ) ) ) |