This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by SN, 21-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarpw.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsvarpw.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsvarpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evlsvarpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| evlsvarpw.x | ⊢ 𝑋 = ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) | ||
| evlsvarpw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvarpw.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | ||
| evlsvarpw.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | ||
| evlsvarpw.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsvarpw.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsvarpw.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | ||
| evlsvarpw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvarpw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvarpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | evlsvarpw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarpw.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsvarpw.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsvarpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 4 | evlsvarpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 5 | evlsvarpw.x | ⊢ 𝑋 = ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) | |
| 6 | evlsvarpw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 7 | evlsvarpw.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 8 | evlsvarpw.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | |
| 9 | evlsvarpw.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 10 | evlsvarpw.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 11 | evlsvarpw.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | |
| 12 | evlsvarpw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 13 | evlsvarpw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 14 | evlsvarpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) | |
| 17 | 6 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 18 | 13 17 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 19 | 2 16 15 10 18 11 | mvrcl | ⊢ ( 𝜑 → ( ( 𝐼 mVar 𝑈 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝑊 ) ) |
| 20 | 5 19 | eqeltrid | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 21 | 1 2 3 4 6 7 8 9 15 10 12 13 14 20 | evlspw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |