This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | ||
| evl1addd.4 | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) ) | ||
| evl1addd.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | ||
| evl1addd.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | evl1addd | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | |
| 8 | evl1addd.4 | ⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) ) | |
| 9 | evl1addd.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | |
| 10 | evl1addd.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) | |
| 12 | 1 2 11 3 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 14 | rhmghm | ⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 16 | ghmgrp1 | ⊢ ( 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) → 𝑃 ∈ Grp ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 18 | 7 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 19 | 8 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ 𝑈 ) |
| 20 | 4 9 | grpcl | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ) |
| 21 | 17 18 19 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ) |
| 22 | eqid | ⊢ ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) = ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 23 | 4 9 22 | ghmlin | ⊢ ( ( 𝑂 ∈ ( 𝑃 GrpHom ( 𝑅 ↑s 𝐵 ) ) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
| 24 | 15 18 19 23 | syl3anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 26 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 27 | 26 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 28 | 4 25 | rhmf | ⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 29 | 13 28 | syl | ⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 30 | 29 18 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 31 | 29 19 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 32 | 11 25 5 27 30 31 10 22 | pwsplusgval | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ( +g ‘ ( 𝑅 ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ) |
| 33 | 24 32 | eqtrd | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) = ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ) |
| 34 | 33 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) ) |
| 35 | 11 3 25 5 27 30 | pwselbas | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) : 𝐵 ⟶ 𝐵 ) |
| 36 | 35 | ffnd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ) |
| 37 | 11 3 25 5 27 31 | pwselbas | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) : 𝐵 ⟶ 𝐵 ) |
| 38 | 37 | ffnd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) |
| 39 | fnfvof | ⊢ ( ( ( ( 𝑂 ‘ 𝑀 ) Fn 𝐵 ∧ ( 𝑂 ‘ 𝑁 ) Fn 𝐵 ) ∧ ( 𝐵 ∈ V ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) | |
| 40 | 36 38 27 6 39 | syl22anc | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ∘f + ( 𝑂 ‘ 𝑁 ) ) ‘ 𝑌 ) = ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) ) |
| 41 | 7 | simprd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) |
| 42 | 8 | simprd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) = 𝑊 ) |
| 43 | 41 42 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) + ( ( 𝑂 ‘ 𝑁 ) ‘ 𝑌 ) ) = ( 𝑉 + 𝑊 ) ) |
| 44 | 34 40 43 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 + 𝑊 ) ) |
| 45 | 21 44 | jca | ⊢ ( 𝜑 → ( ( 𝑀 ✚ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑀 ✚ 𝑁 ) ) ‘ 𝑌 ) = ( 𝑉 + 𝑊 ) ) ) |