This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlcl.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| evlcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| evlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlcl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlcl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlcl | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlcl.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| 2 | evlcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | evlcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | evlcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | evlcl.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | evlcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | evlcl.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 9 | eqid | ⊢ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 11 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 12 | 1 4 2 9 | evlrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 13 | 5 6 12 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 14 | 3 10 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑃 RingHom ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 16 | 15 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 17 | 9 4 10 6 11 16 | pwselbas | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 18 | 17 8 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |