This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1varpw.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| evl1varpw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | ||
| evl1varpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evl1varpw.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| evl1varpw.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1varpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| evl1varpw.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1varpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| evl1varpwval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| evl1varpwval.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) | ||
| evl1varpwval.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | ||
| Assertion | evl1varpwval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝐶 ) = ( 𝑁 𝐸 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1varpw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1varpw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 4 | evl1varpw.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | evl1varpw.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 6 | evl1varpw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | evl1varpw.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 8 | evl1varpw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 9 | evl1varpwval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 10 | evl1varpwval.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) | |
| 11 | evl1varpwval.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 13 | 1 4 5 2 12 7 9 | evl1vard | ⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐶 ) = 𝐶 ) ) |
| 14 | 3 | fveq2i | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 15 | 6 14 | eqtri | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 16 | 10 | fveq2i | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 | 11 16 | eqtri | ⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 18 | 1 2 5 12 7 9 13 15 17 8 | evl1expd | ⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝑋 ) ∈ ( Base ‘ 𝑊 ) ∧ ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝐶 ) = ( 𝑁 𝐸 𝐶 ) ) ) |
| 19 | 18 | simprd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) ‘ 𝐶 ) = ( 𝑁 𝐸 𝐶 ) ) |