This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evl1fval1 . (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1fval1.q | |- Q = ( eval1 ` R ) |
|
| evl1fval1.b | |- B = ( Base ` R ) |
||
| Assertion | evl1fval1lem | |- ( R e. V -> Q = ( R evalSub1 B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval1.q | |- Q = ( eval1 ` R ) |
|
| 2 | evl1fval1.b | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( eval1 ` R ) = ( eval1 ` R ) |
|
| 4 | eqid | |- ( 1o eval R ) = ( 1o eval R ) |
|
| 5 | 3 4 2 | evl1fval | |- ( eval1 ` R ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
| 6 | 1 | a1i | |- ( R e. V -> Q = ( eval1 ` R ) ) |
| 7 | 2 | fvexi | |- B e. _V |
| 8 | 7 | pwid | |- B e. ~P B |
| 9 | eqid | |- ( R evalSub1 B ) = ( R evalSub1 B ) |
|
| 10 | eqid | |- ( 1o evalSub R ) = ( 1o evalSub R ) |
|
| 11 | 9 10 2 | evls1fval | |- ( ( R e. V /\ B e. ~P B ) -> ( R evalSub1 B ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub R ) ` B ) ) ) |
| 12 | 8 11 | mpan2 | |- ( R e. V -> ( R evalSub1 B ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub R ) ` B ) ) ) |
| 13 | 4 2 | evlval | |- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
| 14 | 13 | eqcomi | |- ( ( 1o evalSub R ) ` B ) = ( 1o eval R ) |
| 15 | 14 | coeq2i | |- ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( ( 1o evalSub R ) ` B ) ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
| 16 | 12 15 | eqtrdi | |- ( R e. V -> ( R evalSub1 B ) = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) ) |
| 17 | 5 6 16 | 3eqtr4a | |- ( R e. V -> Q = ( R evalSub1 B ) ) |