This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the univariate polynomial algebra. The function ( eval1R ) : V --> ( R ^m R ) makes sense when R is a ring, and V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from R into an element of R formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evl1 | ⊢ eval1 = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ce1 | ⊢ eval1 | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑟 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | vx | ⊢ 𝑥 | |
| 8 | 6 | cv | ⊢ 𝑏 |
| 9 | cmap | ⊢ ↑m | |
| 10 | c1o | ⊢ 1o | |
| 11 | 8 10 9 | co | ⊢ ( 𝑏 ↑m 1o ) |
| 12 | 8 11 9 | co | ⊢ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) |
| 13 | 7 | cv | ⊢ 𝑥 |
| 14 | vy | ⊢ 𝑦 | |
| 15 | 14 | cv | ⊢ 𝑦 |
| 16 | 15 | csn | ⊢ { 𝑦 } |
| 17 | 10 16 | cxp | ⊢ ( 1o × { 𝑦 } ) |
| 18 | 14 8 17 | cmpt | ⊢ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) |
| 19 | 13 18 | ccom | ⊢ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) |
| 20 | 7 12 19 | cmpt | ⊢ ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 21 | cevl | ⊢ eval | |
| 22 | 10 4 21 | co | ⊢ ( 1o eval 𝑟 ) |
| 23 | 20 22 | ccom | ⊢ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) |
| 24 | 6 5 23 | csb | ⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) |
| 25 | 1 2 24 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) ) |
| 26 | 0 25 | wceq | ⊢ eval1 = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) ) |