This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplascl0.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | |
| mplascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| mplascl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | ||
| mplascl0.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| mplascl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mplascl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mplascl0 | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplascl0.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplascl0.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 3 | mplascl0.o | ⊢ 𝑂 = ( 0g ‘ 𝑅 ) | |
| 4 | mplascl0.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | mplascl0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | mplascl0.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | 1 5 6 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | 3 8 | eqtrid | ⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | 1 5 6 | mpllmodd | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 | 1 5 6 | mplringd | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 14 | 2 11 12 13 | ascl0 | ⊢ ( 𝜑 → ( 𝐴 ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ 𝑊 ) ) |
| 15 | 10 14 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = ( 0g ‘ 𝑊 ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |