This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfrw when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euxfr.1 | ⊢ 𝐴 ∈ V | |
| euxfr.2 | ⊢ ∃! 𝑦 𝑥 = 𝐴 | ||
| euxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | euxfr | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfr.1 | ⊢ 𝐴 ∈ V | |
| 2 | euxfr.2 | ⊢ ∃! 𝑦 𝑥 = 𝐴 | |
| 3 | euxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | euex | ⊢ ( ∃! 𝑦 𝑥 = 𝐴 → ∃ 𝑦 𝑥 = 𝐴 ) | |
| 5 | 2 4 | ax-mp | ⊢ ∃ 𝑦 𝑥 = 𝐴 |
| 6 | 5 | biantrur | ⊢ ( 𝜑 ↔ ( ∃ 𝑦 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 7 | 19.41v | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( ∃ 𝑦 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
| 8 | 3 | pm5.32i | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 10 | 6 7 9 | 3bitr2i | ⊢ ( 𝜑 ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 11 | 10 | eubii | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 12 | 2 | eumoi | ⊢ ∃* 𝑦 𝑥 = 𝐴 |
| 13 | 1 12 | euxfr2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 𝜓 ) |
| 14 | 11 13 | bitri | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 𝜓 ) |