This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfrw when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euxfr.1 | |- A e. _V |
|
| euxfr.2 | |- E! y x = A |
||
| euxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | euxfr | |- ( E! x ph <-> E! y ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfr.1 | |- A e. _V |
|
| 2 | euxfr.2 | |- E! y x = A |
|
| 3 | euxfr.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | euex | |- ( E! y x = A -> E. y x = A ) |
|
| 5 | 2 4 | ax-mp | |- E. y x = A |
| 6 | 5 | biantrur | |- ( ph <-> ( E. y x = A /\ ph ) ) |
| 7 | 19.41v | |- ( E. y ( x = A /\ ph ) <-> ( E. y x = A /\ ph ) ) |
|
| 8 | 3 | pm5.32i | |- ( ( x = A /\ ph ) <-> ( x = A /\ ps ) ) |
| 9 | 8 | exbii | |- ( E. y ( x = A /\ ph ) <-> E. y ( x = A /\ ps ) ) |
| 10 | 6 7 9 | 3bitr2i | |- ( ph <-> E. y ( x = A /\ ps ) ) |
| 11 | 10 | eubii | |- ( E! x ph <-> E! x E. y ( x = A /\ ps ) ) |
| 12 | 2 | eumoi | |- E* y x = A |
| 13 | 1 12 | euxfr2 | |- ( E! x E. y ( x = A /\ ps ) <-> E! y ps ) |
| 14 | 11 13 | bitri | |- ( E! x ph <-> E! y ps ) |