This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker euxfr2w when possible. (Contributed by NM, 14-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euxfr2.1 | ⊢ 𝐴 ∈ V | |
| euxfr2.2 | ⊢ ∃* 𝑦 𝑥 = 𝐴 | ||
| Assertion | euxfr2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfr2.1 | ⊢ 𝐴 ∈ V | |
| 2 | euxfr2.2 | ⊢ ∃* 𝑦 𝑥 = 𝐴 | |
| 3 | 2euswap | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | 2 | moani | ⊢ ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 5 | ancom | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) | |
| 6 | 5 | mobii | ⊢ ( ∃* 𝑦 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 7 | 4 6 | mpbi | ⊢ ∃* 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
| 8 | 3 7 | mpg | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 9 | 2euswap | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) | |
| 10 | moeq | ⊢ ∃* 𝑥 𝑥 = 𝐴 | |
| 11 | 10 | moani | ⊢ ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) |
| 12 | 5 | mobii | ⊢ ( ∃* 𝑥 ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 13 | 11 12 | mpbi | ⊢ ∃* 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) |
| 14 | 9 13 | mpg | ⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 15 | 8 14 | impbii | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 16 | biidd | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜑 ) ) | |
| 17 | 1 16 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) |
| 18 | 17 | eubii | ⊢ ( ∃! 𝑦 ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |
| 19 | 15 18 | bitri | ⊢ ( ∃! 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃! 𝑦 𝜑 ) |