This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eusv2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | eusv2nf | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusv2.1 | ⊢ 𝐴 ∈ V | |
| 2 | nfeu1 | ⊢ Ⅎ 𝑦 ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 | |
| 3 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 𝑦 = 𝐴 | |
| 4 | 3 | nfeuw | ⊢ Ⅎ 𝑥 ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 |
| 5 | 1 | isseti | ⊢ ∃ 𝑦 𝑦 = 𝐴 |
| 6 | 19.8a | ⊢ ( 𝑦 = 𝐴 → ∃ 𝑥 𝑦 = 𝐴 ) | |
| 7 | 6 | ancri | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
| 8 | 5 7 | eximii | ⊢ ∃ 𝑦 ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) |
| 9 | eupick | ⊢ ( ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ∧ ∃ 𝑦 ( ∃ 𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) | |
| 10 | 8 9 | mpan2 | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 11 | 4 10 | alrimi | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) |
| 12 | nf6 | ⊢ ( Ⅎ 𝑥 𝑦 = 𝐴 ↔ ∀ 𝑥 ( ∃ 𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 14 | 2 13 | alrimi | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 15 | dfnfc2 | ⊢ ( ∀ 𝑥 𝐴 ∈ V → ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) ) | |
| 16 | 15 1 | mpg | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 17 | 14 16 | sylibr | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) |
| 18 | eusvnfb | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) | |
| 19 | 1 18 | mpbiran2 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |
| 20 | eusv2i | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ) | |
| 21 | 19 20 | sylbir | ⊢ ( Ⅎ 𝑥 𝐴 → ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ) |
| 22 | 17 21 | impbii | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |