This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eusv2.1 | |- A e. _V |
|
| Assertion | eusv2nf | |- ( E! y E. x y = A <-> F/_ x A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusv2.1 | |- A e. _V |
|
| 2 | nfeu1 | |- F/ y E! y E. x y = A |
|
| 3 | nfe1 | |- F/ x E. x y = A |
|
| 4 | 3 | nfeuw | |- F/ x E! y E. x y = A |
| 5 | 1 | isseti | |- E. y y = A |
| 6 | 19.8a | |- ( y = A -> E. x y = A ) |
|
| 7 | 6 | ancri | |- ( y = A -> ( E. x y = A /\ y = A ) ) |
| 8 | 5 7 | eximii | |- E. y ( E. x y = A /\ y = A ) |
| 9 | eupick | |- ( ( E! y E. x y = A /\ E. y ( E. x y = A /\ y = A ) ) -> ( E. x y = A -> y = A ) ) |
|
| 10 | 8 9 | mpan2 | |- ( E! y E. x y = A -> ( E. x y = A -> y = A ) ) |
| 11 | 4 10 | alrimi | |- ( E! y E. x y = A -> A. x ( E. x y = A -> y = A ) ) |
| 12 | nf6 | |- ( F/ x y = A <-> A. x ( E. x y = A -> y = A ) ) |
|
| 13 | 11 12 | sylibr | |- ( E! y E. x y = A -> F/ x y = A ) |
| 14 | 2 13 | alrimi | |- ( E! y E. x y = A -> A. y F/ x y = A ) |
| 15 | dfnfc2 | |- ( A. x A e. _V -> ( F/_ x A <-> A. y F/ x y = A ) ) |
|
| 16 | 15 1 | mpg | |- ( F/_ x A <-> A. y F/ x y = A ) |
| 17 | 14 16 | sylibr | |- ( E! y E. x y = A -> F/_ x A ) |
| 18 | eusvnfb | |- ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |
|
| 19 | 1 18 | mpbiran2 | |- ( E! y A. x y = A <-> F/_ x A ) |
| 20 | eusv2i | |- ( E! y A. x y = A -> E! y E. x y = A ) |
|
| 21 | 19 20 | sylbir | |- ( F/_ x A -> E! y E. x y = A ) |
| 22 | 17 21 | impbii | |- ( E! y E. x y = A <-> F/_ x A ) |