This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express single-valuedness of a class expression A ( x ) . (Contributed by NM, 15-Oct-2010) (Proof shortened by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eusv2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | eusv2 | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusv2.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | eusv2nf | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |
| 3 | eusvnfb | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) | |
| 4 | 1 3 | mpbiran2 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ Ⅎ 𝑥 𝐴 ) |
| 5 | 2 4 | bitr4i | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝑦 = 𝐴 ↔ ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |