This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that A ( x ) is a set expression that does not depend on x . (Contributed by Mario Carneiro, 18-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusvnfb | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) | |
| 2 | euex | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) | |
| 3 | eqvisset | ⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) | |
| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 5 | 4 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 6 | 2 5 | syl | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → 𝐴 ∈ V ) |
| 7 | 1 6 | jca | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 → ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |
| 8 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 ) | |
| 9 | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) | |
| 10 | id | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) | |
| 11 | 9 10 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 12 | 11 | nf5rd | ⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑦 = 𝐴 → ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 13 | 12 | eximdv | ⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 14 | 8 13 | biimtrid | ⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ V → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) ) |
| 15 | 14 | imp | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 16 | eusv1 | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) → ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ) |
| 18 | 7 17 | impbii | ⊢ ( ∃! 𝑦 ∀ 𝑥 𝑦 = 𝐴 ↔ ( Ⅎ 𝑥 𝐴 ∧ 𝐴 ∈ V ) ) |