This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative statement of the effective freeness of a class A , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof shortened by JJ, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnfc2 | ⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 ) | |
| 2 | id | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) | |
| 3 | 1 2 | nfeqd | ⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 4 | 3 | alrimiv | ⊢ ( Ⅎ 𝑥 𝐴 → ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 5 | df-nfc | ⊢ ( Ⅎ 𝑥 { 𝐴 } ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ) | |
| 6 | velsn | ⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) | |
| 7 | 6 | nfbii | ⊢ ( Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ↔ Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ { 𝐴 } ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) |
| 9 | 5 8 | sylbbr | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 { 𝐴 } ) |
| 10 | 9 | nfunid | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 ∪ { 𝐴 } ) |
| 11 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝐴 ∈ 𝑉 | |
| 12 | unisng | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) | |
| 13 | 12 | sps | ⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
| 14 | 11 13 | nfceqdf | ⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 ∪ { 𝐴 } ↔ Ⅎ 𝑥 𝐴 ) ) |
| 15 | 10 14 | imbitrid | ⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 → Ⅎ 𝑥 𝐴 ) ) |
| 16 | 4 15 | impbid2 | ⊢ ( ∀ 𝑥 𝐴 ∈ 𝑉 → ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 = 𝐴 ) ) |