This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 5-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| eupth0.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | eupth0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eupth0.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | eqidd | ⊢ ( 𝐴 ∈ 𝑉 → { 〈 0 , 𝐴 〉 } = { 〈 0 , 𝐴 〉 } ) | |
| 4 | 1 | is0wlk | ⊢ ( ( { 〈 0 , 𝐴 〉 } = { 〈 0 , 𝐴 〉 } ∧ 𝐴 ∈ 𝑉 ) → ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |
| 5 | 3 4 | mpancom | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |
| 6 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 7 | eqidd | ⊢ ( 𝐼 = ∅ → ∅ = ∅ ) | |
| 8 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 9 | 8 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ( 0 ..^ 0 ) |
| 10 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 11 | 9 10 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ |
| 12 | 11 | a1i | ⊢ ( 𝐼 = ∅ → ( 0 ..^ ( ♯ ‘ ∅ ) ) = ∅ ) |
| 13 | dmeq | ⊢ ( 𝐼 = ∅ → dom 𝐼 = dom ∅ ) | |
| 14 | dm0 | ⊢ dom ∅ = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝐼 = ∅ → dom 𝐼 = ∅ ) |
| 16 | 7 12 15 | f1oeq123d | ⊢ ( 𝐼 = ∅ → ( ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
| 17 | 6 16 | mpbiri | ⊢ ( 𝐼 = ∅ → ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) |
| 18 | 5 17 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ∧ ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) ) |
| 19 | 2 | iseupthf1o | ⊢ ( ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ↔ ( ∅ ( Walks ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ∧ ∅ : ( 0 ..^ ( ♯ ‘ ∅ ) ) –1-1-onto→ dom 𝐼 ) ) |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ∅ ( EulerPaths ‘ 𝐺 ) { 〈 0 , 𝐴 〉 } ) |