This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 5-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupth0.v | |- V = ( Vtx ` G ) |
|
| eupth0.i | |- I = ( iEdg ` G ) |
||
| Assertion | eupth0 | |- ( ( A e. V /\ I = (/) ) -> (/) ( EulerPaths ` G ) { <. 0 , A >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupth0.v | |- V = ( Vtx ` G ) |
|
| 2 | eupth0.i | |- I = ( iEdg ` G ) |
|
| 3 | eqidd | |- ( A e. V -> { <. 0 , A >. } = { <. 0 , A >. } ) |
|
| 4 | 1 | is0wlk | |- ( ( { <. 0 , A >. } = { <. 0 , A >. } /\ A e. V ) -> (/) ( Walks ` G ) { <. 0 , A >. } ) |
| 5 | 3 4 | mpancom | |- ( A e. V -> (/) ( Walks ` G ) { <. 0 , A >. } ) |
| 6 | f1o0 | |- (/) : (/) -1-1-onto-> (/) |
|
| 7 | eqidd | |- ( I = (/) -> (/) = (/) ) |
|
| 8 | hash0 | |- ( # ` (/) ) = 0 |
|
| 9 | 8 | oveq2i | |- ( 0 ..^ ( # ` (/) ) ) = ( 0 ..^ 0 ) |
| 10 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 11 | 9 10 | eqtri | |- ( 0 ..^ ( # ` (/) ) ) = (/) |
| 12 | 11 | a1i | |- ( I = (/) -> ( 0 ..^ ( # ` (/) ) ) = (/) ) |
| 13 | dmeq | |- ( I = (/) -> dom I = dom (/) ) |
|
| 14 | dm0 | |- dom (/) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( I = (/) -> dom I = (/) ) |
| 16 | 7 12 15 | f1oeq123d | |- ( I = (/) -> ( (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I <-> (/) : (/) -1-1-onto-> (/) ) ) |
| 17 | 6 16 | mpbiri | |- ( I = (/) -> (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) |
| 18 | 5 17 | anim12i | |- ( ( A e. V /\ I = (/) ) -> ( (/) ( Walks ` G ) { <. 0 , A >. } /\ (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) ) |
| 19 | 2 | iseupthf1o | |- ( (/) ( EulerPaths ` G ) { <. 0 , A >. } <-> ( (/) ( Walks ` G ) { <. 0 , A >. } /\ (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) ) |
| 20 | 18 19 | sylibr | |- ( ( A e. V /\ I = (/) ) -> (/) ( EulerPaths ` G ) { <. 0 , A >. } ) |