This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995) (Proof shortened by Mario Carneiro, 28-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eueq3.1 | ⊢ 𝐴 ∈ V | |
| eueq3.2 | ⊢ 𝐵 ∈ V | ||
| eueq3.3 | ⊢ 𝐶 ∈ V | ||
| eueq3.4 | ⊢ ¬ ( 𝜑 ∧ 𝜓 ) | ||
| Assertion | eueq3 | ⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq3.1 | ⊢ 𝐴 ∈ V | |
| 2 | eueq3.2 | ⊢ 𝐵 ∈ V | |
| 3 | eueq3.3 | ⊢ 𝐶 ∈ V | |
| 4 | eueq3.4 | ⊢ ¬ ( 𝜑 ∧ 𝜓 ) | |
| 5 | 1 | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐴 |
| 6 | ibar | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) | |
| 7 | pm2.45 | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜑 ) | |
| 8 | 4 | imnani | ⊢ ( 𝜑 → ¬ 𝜓 ) |
| 9 | 8 | con2i | ⊢ ( 𝜓 → ¬ 𝜑 ) |
| 10 | 7 9 | jaoi | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) → ¬ 𝜑 ) |
| 11 | 10 | con2i | ⊢ ( 𝜑 → ¬ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ) |
| 12 | 7 | con2i | ⊢ ( 𝜑 → ¬ ¬ ( 𝜑 ∨ 𝜓 ) ) |
| 13 | 12 | bianfd | ⊢ ( 𝜑 → ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 14 | 8 | bianfd | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 15 | 13 14 | orbi12d | ⊢ ( 𝜑 → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜓 ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 16 | 11 15 | mtbid | ⊢ ( 𝜑 → ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 17 | biorf | ⊢ ( ¬ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
| 19 | 6 18 | bitrd | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) ) |
| 20 | 3orrot | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) | |
| 21 | df-3or | ⊢ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) | |
| 22 | 20 21 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 23 | 19 22 | bitr4di | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 24 | 23 | eubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 𝑥 = 𝐴 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 25 | 5 24 | mpbii | ⊢ ( 𝜑 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 26 | 3 | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐶 |
| 27 | ibar | ⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) | |
| 28 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ¬ 𝜓 ) |
| 29 | pm2.46 | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ¬ 𝜓 ) | |
| 30 | 29 | adantr | ⊢ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) → ¬ 𝜓 ) |
| 31 | 28 30 | jaoi | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ¬ 𝜓 ) |
| 32 | 31 | con2i | ⊢ ( 𝜓 → ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 33 | biorf | ⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜓 → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 35 | 27 34 | bitrd | ⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 36 | df-3or | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) | |
| 37 | 35 36 | bitr4di | ⊢ ( 𝜓 → ( 𝑥 = 𝐶 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 38 | 37 | eubidv | ⊢ ( 𝜓 → ( ∃! 𝑥 𝑥 = 𝐶 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 39 | 26 38 | mpbii | ⊢ ( 𝜓 → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 40 | 2 | eueqi | ⊢ ∃! 𝑥 𝑥 = 𝐵 |
| 41 | ibar | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) | |
| 42 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜑 ) | |
| 43 | simpl | ⊢ ( ( 𝜓 ∧ 𝑥 = 𝐶 ) → 𝜓 ) | |
| 44 | 42 43 | orim12i | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( 𝜑 ∨ 𝜓 ) ) |
| 45 | biorf | ⊢ ( ¬ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) | |
| 46 | 44 45 | nsyl5 | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
| 47 | 41 46 | bitrd | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) ) |
| 48 | 3orcomb | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) | |
| 49 | df-3or | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) | |
| 50 | 48 49 | bitri | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 51 | 47 50 | bitr4di | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( 𝑥 = 𝐵 ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 52 | 51 | eubidv | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ( ∃! 𝑥 𝑥 = 𝐵 ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 53 | 40 52 | mpbii | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 54 | 25 39 53 | ecase3 | ⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |