This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995) (Proof shortened by Mario Carneiro, 28-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eueq3.1 | |- A e. _V |
|
| eueq3.2 | |- B e. _V |
||
| eueq3.3 | |- C e. _V |
||
| eueq3.4 | |- -. ( ph /\ ps ) |
||
| Assertion | eueq3 | |- E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eueq3.1 | |- A e. _V |
|
| 2 | eueq3.2 | |- B e. _V |
|
| 3 | eueq3.3 | |- C e. _V |
|
| 4 | eueq3.4 | |- -. ( ph /\ ps ) |
|
| 5 | 1 | eueqi | |- E! x x = A |
| 6 | ibar | |- ( ph -> ( x = A <-> ( ph /\ x = A ) ) ) |
|
| 7 | pm2.45 | |- ( -. ( ph \/ ps ) -> -. ph ) |
|
| 8 | 4 | imnani | |- ( ph -> -. ps ) |
| 9 | 8 | con2i | |- ( ps -> -. ph ) |
| 10 | 7 9 | jaoi | |- ( ( -. ( ph \/ ps ) \/ ps ) -> -. ph ) |
| 11 | 10 | con2i | |- ( ph -> -. ( -. ( ph \/ ps ) \/ ps ) ) |
| 12 | 7 | con2i | |- ( ph -> -. -. ( ph \/ ps ) ) |
| 13 | 12 | bianfd | |- ( ph -> ( -. ( ph \/ ps ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 14 | 8 | bianfd | |- ( ph -> ( ps <-> ( ps /\ x = C ) ) ) |
| 15 | 13 14 | orbi12d | |- ( ph -> ( ( -. ( ph \/ ps ) \/ ps ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 16 | 11 15 | mtbid | |- ( ph -> -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 17 | biorf | |- ( -. ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( ( ph /\ x = A ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
| 19 | 6 18 | bitrd | |- ( ph -> ( x = A <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) ) |
| 20 | 3orrot | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) ) |
|
| 21 | df-3or | |- ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) \/ ( ph /\ x = A ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
|
| 22 | 20 21 | bitri | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) \/ ( ph /\ x = A ) ) ) |
| 23 | 19 22 | bitr4di | |- ( ph -> ( x = A <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 24 | 23 | eubidv | |- ( ph -> ( E! x x = A <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 25 | 5 24 | mpbii | |- ( ph -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 26 | 3 | eueqi | |- E! x x = C |
| 27 | ibar | |- ( ps -> ( x = C <-> ( ps /\ x = C ) ) ) |
|
| 28 | 8 | adantr | |- ( ( ph /\ x = A ) -> -. ps ) |
| 29 | pm2.46 | |- ( -. ( ph \/ ps ) -> -. ps ) |
|
| 30 | 29 | adantr | |- ( ( -. ( ph \/ ps ) /\ x = B ) -> -. ps ) |
| 31 | 28 30 | jaoi | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> -. ps ) |
| 32 | 31 | con2i | |- ( ps -> -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 33 | biorf | |- ( -. ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
|
| 34 | 32 33 | syl | |- ( ps -> ( ( ps /\ x = C ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
| 35 | 27 34 | bitrd | |- ( ps -> ( x = C <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) ) |
| 36 | df-3or | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) \/ ( ps /\ x = C ) ) ) |
|
| 37 | 35 36 | bitr4di | |- ( ps -> ( x = C <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 38 | 37 | eubidv | |- ( ps -> ( E! x x = C <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 39 | 26 38 | mpbii | |- ( ps -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 40 | 2 | eueqi | |- E! x x = B |
| 41 | ibar | |- ( -. ( ph \/ ps ) -> ( x = B <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
|
| 42 | simpl | |- ( ( ph /\ x = A ) -> ph ) |
|
| 43 | simpl | |- ( ( ps /\ x = C ) -> ps ) |
|
| 44 | 42 43 | orim12i | |- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ph \/ ps ) ) |
| 45 | biorf | |- ( -. ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
|
| 46 | 44 45 | nsyl5 | |- ( -. ( ph \/ ps ) -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
| 47 | 41 46 | bitrd | |- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) ) |
| 48 | 3orcomb | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
|
| 49 | df-3or | |- ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
|
| 50 | 48 49 | bitri | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ( ph /\ x = A ) \/ ( ps /\ x = C ) ) \/ ( -. ( ph \/ ps ) /\ x = B ) ) ) |
| 51 | 47 50 | bitr4di | |- ( -. ( ph \/ ps ) -> ( x = B <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 52 | 51 | eubidv | |- ( -. ( ph \/ ps ) -> ( E! x x = B <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 53 | 40 52 | mpbii | |- ( -. ( ph \/ ps ) -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 54 | 25 39 53 | ecase3 | |- E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |