This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma of eu6im . A dissection of an idiom characterizing existential uniqueness. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eu6lem | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) ) | |
| 2 | alsyl | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) ) | |
| 3 | equvelv | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝑥 = 𝑧 ) ↔ 𝑦 = 𝑧 ) | |
| 4 | 2 3 | sylib | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) → 𝑦 = 𝑧 ) |
| 5 | 4 | pm4.71i | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) ) |
| 6 | albiim | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) | |
| 7 | 6 | biancomi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 8 | equequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) | |
| 9 | 8 | imbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 10 | 9 | albidv | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) ) |
| 12 | 7 11 | bitrid | ⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) ) |
| 13 | 12 | pm5.32ri | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ↔ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ∧ 𝑦 = 𝑧 ) ) |
| 14 | 5 13 | bitr4i | ⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ 𝑦 = 𝑧 ) ) |
| 16 | ax6evr | ⊢ ∃ 𝑧 𝑦 = 𝑧 | |
| 17 | 16 | biantru | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ∧ ∃ 𝑧 𝑦 = 𝑧 ) ) |
| 18 | 1 15 17 | 3bitr4ri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 19 | 18 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 20 | exdistrv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) | |
| 21 | 19 20 | bitri | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑦 ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |