This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma of eu6im . A dissection of an idiom characterizing existential uniqueness. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eu6lem | |- ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | |- ( E. z ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) ) |
|
| 2 | alsyl | |- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> A. x ( x = y -> x = z ) ) |
|
| 3 | equvelv | |- ( A. x ( x = y -> x = z ) <-> y = z ) |
|
| 4 | 2 3 | sylib | |- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) -> y = z ) |
| 5 | 4 | pm4.71i | |- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) ) |
| 6 | albiim | |- ( A. x ( ph <-> x = y ) <-> ( A. x ( ph -> x = y ) /\ A. x ( x = y -> ph ) ) ) |
|
| 7 | 6 | biancomi | |- ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) ) |
| 8 | equequ2 | |- ( y = z -> ( x = y <-> x = z ) ) |
|
| 9 | 8 | imbi2d | |- ( y = z -> ( ( ph -> x = y ) <-> ( ph -> x = z ) ) ) |
| 10 | 9 | albidv | |- ( y = z -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = z ) ) ) |
| 11 | 10 | anbi2d | |- ( y = z -> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = y ) ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) ) |
| 12 | 7 11 | bitrid | |- ( y = z -> ( A. x ( ph <-> x = y ) <-> ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) ) |
| 13 | 12 | pm5.32ri | |- ( ( A. x ( ph <-> x = y ) /\ y = z ) <-> ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) /\ y = z ) ) |
| 14 | 5 13 | bitr4i | |- ( ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( A. x ( ph <-> x = y ) /\ y = z ) ) |
| 15 | 14 | exbii | |- ( E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> E. z ( A. x ( ph <-> x = y ) /\ y = z ) ) |
| 16 | ax6evr | |- E. z y = z |
|
| 17 | 16 | biantru | |- ( A. x ( ph <-> x = y ) <-> ( A. x ( ph <-> x = y ) /\ E. z y = z ) ) |
| 18 | 1 15 17 | 3bitr4ri | |- ( A. x ( ph <-> x = y ) <-> E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) |
| 19 | 18 | exbii | |- ( E. y A. x ( ph <-> x = y ) <-> E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) ) |
| 20 | exdistrv | |- ( E. y E. z ( A. x ( x = y -> ph ) /\ A. x ( ph -> x = z ) ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |
|
| 21 | 19 20 | bitri | |- ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( x = y -> ph ) /\ E. z A. x ( ph -> x = z ) ) ) |