This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express equivalent cosets. (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 20-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelcoss | ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel | ⊢ ( EqvRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅 ) ) | |
| 2 | refrelcoss | ⊢ RefRel ≀ 𝑅 | |
| 3 | symrelcoss | ⊢ SymRel ≀ 𝑅 | |
| 4 | 2 3 | triantru3 | ⊢ ( TrRel ≀ 𝑅 ↔ ( RefRel ≀ 𝑅 ∧ SymRel ≀ 𝑅 ∧ TrRel ≀ 𝑅 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( EqvRel ≀ 𝑅 ↔ TrRel ≀ 𝑅 ) |