This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqsel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ||
| 2 | eleq2 | ||
| 3 | eqeq1 | ||
| 4 | 2 3 | imbi12d | |
| 5 | elecALTV | ||
| 6 | 5 | el2v1 | |
| 7 | 6 | ibi | |
| 8 | simpll | ||
| 9 | simpr | ||
| 10 | 8 9 | eqvrelthi | |
| 11 | 10 | ex | |
| 12 | 7 11 | syl5 | |
| 13 | 1 4 12 | ectocld | |
| 14 | 13 | 3impia |