This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvrelthi.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| eqvrelthi.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | ||
| Assertion | eqvrelthi | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelthi.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| 2 | eqvrelthi.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | |
| 3 | 1 2 | eqvrelcl | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑅 ) |
| 4 | 1 3 | eqvrelth | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) ) |
| 5 | 2 4 | mpbid | ⊢ ( 𝜑 → [ 𝐴 ] 𝑅 = [ 𝐵 ] 𝑅 ) |