This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvincf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| eqvincf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| eqvincf.3 | ⊢ 𝐴 ∈ V | ||
| Assertion | eqvincf | ⊢ ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvincf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | eqvincf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | eqvincf.3 | ⊢ 𝐴 ∈ V | |
| 4 | 3 | eqvinc | ⊢ ( 𝐴 = 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 5 | 1 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
| 6 | 2 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = 𝐵 |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) |
| 8 | nfv | ⊢ Ⅎ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) | |
| 9 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐴 ↔ 𝑥 = 𝐴 ) ) | |
| 10 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = 𝐵 ↔ 𝑥 = 𝐵 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) ) |
| 12 | 7 8 11 | cbvexv1 | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) |
| 13 | 4 12 | bitri | ⊢ ( 𝐴 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐵 ) ) |