This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express substitution of A for x in ph . This is the analogue for classes of sbalex . (Contributed by NM, 2-Mar-1995) (Revised by BJ, 27-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alexeqg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 4 | 1 | imbi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 6 | sbalex | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) | |
| 7 | 3 5 6 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 8 | 7 | bicomd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |