This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvincf.1 | |- F/_ x A |
|
| eqvincf.2 | |- F/_ x B |
||
| eqvincf.3 | |- A e. _V |
||
| Assertion | eqvincf | |- ( A = B <-> E. x ( x = A /\ x = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvincf.1 | |- F/_ x A |
|
| 2 | eqvincf.2 | |- F/_ x B |
|
| 3 | eqvincf.3 | |- A e. _V |
|
| 4 | 3 | eqvinc | |- ( A = B <-> E. y ( y = A /\ y = B ) ) |
| 5 | 1 | nfeq2 | |- F/ x y = A |
| 6 | 2 | nfeq2 | |- F/ x y = B |
| 7 | 5 6 | nfan | |- F/ x ( y = A /\ y = B ) |
| 8 | nfv | |- F/ y ( x = A /\ x = B ) |
|
| 9 | eqeq1 | |- ( y = x -> ( y = A <-> x = A ) ) |
|
| 10 | eqeq1 | |- ( y = x -> ( y = B <-> x = B ) ) |
|
| 11 | 9 10 | anbi12d | |- ( y = x -> ( ( y = A /\ y = B ) <-> ( x = A /\ x = B ) ) ) |
| 12 | 7 8 11 | cbvexv1 | |- ( E. y ( y = A /\ y = B ) <-> E. x ( x = A /\ x = B ) ) |
| 13 | 4 12 | bitri | |- ( A = B <-> E. x ( x = A /\ x = B ) ) |