This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsqrtd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| eqsqrtd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| eqsqrtd.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = 𝐵 ) | ||
| eqsqrt2d.4 | ⊢ ( 𝜑 → 0 < ( ℜ ‘ 𝐴 ) ) | ||
| Assertion | eqsqrt2d | ⊢ ( 𝜑 → 𝐴 = ( √ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | eqsqrtd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | eqsqrtd.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) = 𝐵 ) | |
| 4 | eqsqrt2d.4 | ⊢ ( 𝜑 → 0 < ( ℜ ‘ 𝐴 ) ) | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1 | recld | ⊢ ( 𝜑 → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 7 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℜ ‘ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝜑 → ( 0 < ( ℜ ‘ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) ) |
| 9 | 4 8 | mpd | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐴 ) ) |
| 10 | reim | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 12 | 4 | gt0ne0d | ⊢ ( 𝜑 → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 13 | 11 12 | eqnetrrd | ⊢ ( 𝜑 → ( ℑ ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 14 | rpre | ⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ∈ ℝ ) | |
| 15 | 14 | reim0d | ⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) |
| 16 | 15 | necon3ai | ⊢ ( ( ℑ ‘ ( i · 𝐴 ) ) ≠ 0 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 17 | 13 16 | syl | ⊢ ( 𝜑 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 18 | 1 2 3 9 17 | eqsqrtd | ⊢ ( 𝜑 → 𝐴 = ( √ ‘ 𝐵 ) ) |