This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsqrtd.1 | |- ( ph -> A e. CC ) |
|
| eqsqrtd.2 | |- ( ph -> B e. CC ) |
||
| eqsqrtd.3 | |- ( ph -> ( A ^ 2 ) = B ) |
||
| eqsqrt2d.4 | |- ( ph -> 0 < ( Re ` A ) ) |
||
| Assertion | eqsqrt2d | |- ( ph -> A = ( sqrt ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsqrtd.1 | |- ( ph -> A e. CC ) |
|
| 2 | eqsqrtd.2 | |- ( ph -> B e. CC ) |
|
| 3 | eqsqrtd.3 | |- ( ph -> ( A ^ 2 ) = B ) |
|
| 4 | eqsqrt2d.4 | |- ( ph -> 0 < ( Re ` A ) ) |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 1 | recld | |- ( ph -> ( Re ` A ) e. RR ) |
| 7 | ltle | |- ( ( 0 e. RR /\ ( Re ` A ) e. RR ) -> ( 0 < ( Re ` A ) -> 0 <_ ( Re ` A ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( ph -> ( 0 < ( Re ` A ) -> 0 <_ ( Re ` A ) ) ) |
| 9 | 4 8 | mpd | |- ( ph -> 0 <_ ( Re ` A ) ) |
| 10 | reim | |- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
|
| 11 | 1 10 | syl | |- ( ph -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 12 | 4 | gt0ne0d | |- ( ph -> ( Re ` A ) =/= 0 ) |
| 13 | 11 12 | eqnetrrd | |- ( ph -> ( Im ` ( _i x. A ) ) =/= 0 ) |
| 14 | rpre | |- ( ( _i x. A ) e. RR+ -> ( _i x. A ) e. RR ) |
|
| 15 | 14 | reim0d | |- ( ( _i x. A ) e. RR+ -> ( Im ` ( _i x. A ) ) = 0 ) |
| 16 | 15 | necon3ai | |- ( ( Im ` ( _i x. A ) ) =/= 0 -> -. ( _i x. A ) e. RR+ ) |
| 17 | 13 16 | syl | |- ( ph -> -. ( _i x. A ) e. RR+ ) |
| 18 | 1 2 3 9 17 | eqsqrtd | |- ( ph -> A = ( sqrt ` B ) ) |