This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdl1exs1 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ∃ 𝑠 ∈ 𝑆 𝑊 = 〈“ 𝑠 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1le1 | ⊢ 1 ≤ 1 | |
| 2 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ 1 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → 1 ≤ ( ♯ ‘ 𝑊 ) ) |
| 4 | wrdsymb1 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( 𝑊 ‘ 0 ) ∈ 𝑆 ) |
| 6 | s1eq | ⊢ ( 𝑠 = ( 𝑊 ‘ 0 ) → 〈“ 𝑠 ”〉 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) ∧ 𝑠 = ( 𝑊 ‘ 0 ) ) → 〈“ 𝑠 ”〉 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) |
| 8 | 7 | eqeq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) ∧ 𝑠 = ( 𝑊 ‘ 0 ) ) → ( 𝑊 = 〈“ 𝑠 ”〉 ↔ 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) |
| 9 | eqs1 | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → 𝑊 = 〈“ ( 𝑊 ‘ 0 ) ”〉 ) | |
| 10 | 5 8 9 | rspcedvd | ⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ∃ 𝑠 ∈ 𝑆 𝑊 = 〈“ 𝑠 ”〉 ) |