This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the equivalence relation in a group generated by a subgroup. More precisely, if G is a group and H is a subgroup, then G ~QG H is the equivalence relation on G associated with the left cosets of H . A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eqg | ⊢ ~QG = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cqg | ⊢ ~QG | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vi | ⊢ 𝑖 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | vy | ⊢ 𝑦 | |
| 6 | 4 | cv | ⊢ 𝑥 |
| 7 | 5 | cv | ⊢ 𝑦 |
| 8 | 6 7 | cpr | ⊢ { 𝑥 , 𝑦 } |
| 9 | cbs | ⊢ Base | |
| 10 | 1 | cv | ⊢ 𝑟 |
| 11 | 10 9 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 12 | 8 11 | wss | ⊢ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) |
| 13 | cminusg | ⊢ invg | |
| 14 | 10 13 | cfv | ⊢ ( invg ‘ 𝑟 ) |
| 15 | 6 14 | cfv | ⊢ ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) |
| 16 | cplusg | ⊢ +g | |
| 17 | 10 16 | cfv | ⊢ ( +g ‘ 𝑟 ) |
| 18 | 15 7 17 | co | ⊢ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) |
| 19 | 3 | cv | ⊢ 𝑖 |
| 20 | 18 19 | wcel | ⊢ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 |
| 21 | 12 20 | wa | ⊢ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) |
| 22 | 21 4 5 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } |
| 23 | 1 3 2 2 22 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } ) |
| 24 | 0 23 | wceq | ⊢ ~QG = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑟 ) ∧ ( ( ( invg ‘ 𝑟 ) ‘ 𝑥 ) ( +g ‘ 𝑟 ) 𝑦 ) ∈ 𝑖 ) } ) |