This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqfunresadj | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) | |
| 2 | relres | ⊢ Rel ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) | |
| 3 | breq | ⊢ ( ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) → ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ) ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ) ) |
| 5 | velsn | ⊢ ( 𝑥 ∈ { 𝑌 } ↔ 𝑥 = 𝑌 ) | |
| 6 | simp33 | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ ( 𝐺 ‘ 𝑌 ) = 𝑦 ) ) |
| 8 | simp1l | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → Fun 𝐹 ) | |
| 9 | simp31 | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → 𝑌 ∈ dom 𝐹 ) | |
| 10 | funbrfvb | ⊢ ( ( Fun 𝐹 ∧ 𝑌 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) |
| 12 | simp1r | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → Fun 𝐺 ) | |
| 13 | simp32 | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → 𝑌 ∈ dom 𝐺 ) | |
| 14 | funbrfvb | ⊢ ( ( Fun 𝐺 ∧ 𝑌 ∈ dom 𝐺 ) → ( ( 𝐺 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝐺 ‘ 𝑌 ) = 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
| 16 | 7 11 15 | 3bitr3d | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑌 𝐹 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 𝐹 𝑦 ↔ 𝑌 𝐹 𝑦 ) ) | |
| 18 | breq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 𝐺 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) | |
| 19 | 17 18 | bibi12d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ↔ ( 𝑌 𝐹 𝑦 ↔ 𝑌 𝐺 𝑦 ) ) ) |
| 20 | 16 19 | syl5ibrcom | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 = 𝑌 → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ) ) |
| 21 | 5 20 | biimtrid | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ∈ { 𝑌 } → ( 𝑥 𝐹 𝑦 ↔ 𝑥 𝐺 𝑦 ) ) ) |
| 22 | 21 | pm5.32d | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐺 𝑦 ) ) ) |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 23 | brresi | ⊢ ( 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐹 𝑦 ) ) |
| 25 | 23 | brresi | ⊢ ( 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑌 } ∧ 𝑥 𝐺 𝑦 ) ) |
| 26 | 22 24 25 | 3bitr4g | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) |
| 27 | 4 26 | orbi12d | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) ) |
| 28 | resundi | ⊢ ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) | |
| 29 | 28 | breqi | ⊢ ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) 𝑦 ) |
| 30 | brun | ⊢ ( 𝑥 ( ( 𝐹 ↾ 𝑋 ) ∪ ( 𝐹 ↾ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ) | |
| 31 | 29 30 | bitri | ⊢ ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐹 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐹 ↾ { 𝑌 } ) 𝑦 ) ) |
| 32 | resundi | ⊢ ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) | |
| 33 | 32 | breqi | ⊢ ( 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) 𝑦 ) |
| 34 | brun | ⊢ ( 𝑥 ( ( 𝐺 ↾ 𝑋 ) ∪ ( 𝐺 ↾ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) | |
| 35 | 33 34 | bitri | ⊢ ( 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ ( 𝑥 ( 𝐺 ↾ 𝑋 ) 𝑦 ∨ 𝑥 ( 𝐺 ↾ { 𝑌 } ) 𝑦 ) ) |
| 36 | 27 31 35 | 3bitr4g | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝑥 ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ↔ 𝑥 ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) 𝑦 ) ) |
| 37 | 1 2 36 | eqbrrdiv | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( 𝐹 ↾ 𝑋 ) = ( 𝐺 ↾ 𝑋 ) ∧ ( 𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑌 ) ) ) → ( 𝐹 ↾ ( 𝑋 ∪ { 𝑌 } ) ) = ( 𝐺 ↾ ( 𝑋 ∪ { 𝑌 } ) ) ) |