This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation involving equality of dependent classes A ( x ) and B ( y ) . (Contributed by NM, 17-Mar-2008) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqer.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| eqer.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝐴 = 𝐵 } | ||
| Assertion | eqer | ⊢ 𝑅 Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 2 | eqer.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝐴 = 𝐵 } | |
| 3 | 2 | relopabiv | ⊢ Rel 𝑅 |
| 4 | id | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) | |
| 5 | 4 | eqcomd | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 → ⦋ 𝑤 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 6 | 1 2 | eqerlem | ⊢ ( 𝑧 𝑅 𝑤 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ) |
| 7 | 1 2 | eqerlem | ⊢ ( 𝑤 𝑅 𝑧 ↔ ⦋ 𝑤 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 8 | 5 6 7 | 3imtr4i | ⊢ ( 𝑧 𝑅 𝑤 → 𝑤 𝑅 𝑧 ) |
| 9 | eqtr | ⊢ ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ∧ ⦋ 𝑤 / 𝑥 ⦌ 𝐴 = ⦋ 𝑣 / 𝑥 ⦌ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑣 / 𝑥 ⦌ 𝐴 ) | |
| 10 | 1 2 | eqerlem | ⊢ ( 𝑤 𝑅 𝑣 ↔ ⦋ 𝑤 / 𝑥 ⦌ 𝐴 = ⦋ 𝑣 / 𝑥 ⦌ 𝐴 ) |
| 11 | 6 10 | anbi12i | ⊢ ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑣 ) ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑤 / 𝑥 ⦌ 𝐴 ∧ ⦋ 𝑤 / 𝑥 ⦌ 𝐴 = ⦋ 𝑣 / 𝑥 ⦌ 𝐴 ) ) |
| 12 | 1 2 | eqerlem | ⊢ ( 𝑧 𝑅 𝑣 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑣 / 𝑥 ⦌ 𝐴 ) |
| 13 | 9 11 12 | 3imtr4i | ⊢ ( ( 𝑧 𝑅 𝑤 ∧ 𝑤 𝑅 𝑣 ) → 𝑧 𝑅 𝑣 ) |
| 14 | vex | ⊢ 𝑧 ∈ V | |
| 15 | eqid | ⊢ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 16 | 1 2 | eqerlem | ⊢ ( 𝑧 𝑅 𝑧 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
| 17 | 15 16 | mpbir | ⊢ 𝑧 𝑅 𝑧 |
| 18 | 14 17 | 2th | ⊢ ( 𝑧 ∈ V ↔ 𝑧 𝑅 𝑧 ) |
| 19 | 3 8 13 18 | iseri | ⊢ 𝑅 Er V |