This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation involving equality of dependent classes A ( x ) and B ( y ) . (Contributed by NM, 17-Mar-2008) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqer.1 | |- ( x = y -> A = B ) |
|
| eqer.2 | |- R = { <. x , y >. | A = B } |
||
| Assertion | eqer | |- R Er _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.1 | |- ( x = y -> A = B ) |
|
| 2 | eqer.2 | |- R = { <. x , y >. | A = B } |
|
| 3 | 2 | relopabiv | |- Rel R |
| 4 | id | |- ( [_ z / x ]_ A = [_ w / x ]_ A -> [_ z / x ]_ A = [_ w / x ]_ A ) |
|
| 5 | 4 | eqcomd | |- ( [_ z / x ]_ A = [_ w / x ]_ A -> [_ w / x ]_ A = [_ z / x ]_ A ) |
| 6 | 1 2 | eqerlem | |- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
| 7 | 1 2 | eqerlem | |- ( w R z <-> [_ w / x ]_ A = [_ z / x ]_ A ) |
| 8 | 5 6 7 | 3imtr4i | |- ( z R w -> w R z ) |
| 9 | eqtr | |- ( ( [_ z / x ]_ A = [_ w / x ]_ A /\ [_ w / x ]_ A = [_ v / x ]_ A ) -> [_ z / x ]_ A = [_ v / x ]_ A ) |
|
| 10 | 1 2 | eqerlem | |- ( w R v <-> [_ w / x ]_ A = [_ v / x ]_ A ) |
| 11 | 6 10 | anbi12i | |- ( ( z R w /\ w R v ) <-> ( [_ z / x ]_ A = [_ w / x ]_ A /\ [_ w / x ]_ A = [_ v / x ]_ A ) ) |
| 12 | 1 2 | eqerlem | |- ( z R v <-> [_ z / x ]_ A = [_ v / x ]_ A ) |
| 13 | 9 11 12 | 3imtr4i | |- ( ( z R w /\ w R v ) -> z R v ) |
| 14 | vex | |- z e. _V |
|
| 15 | eqid | |- [_ z / x ]_ A = [_ z / x ]_ A |
|
| 16 | 1 2 | eqerlem | |- ( z R z <-> [_ z / x ]_ A = [_ z / x ]_ A ) |
| 17 | 15 16 | mpbir | |- z R z |
| 18 | 14 17 | 2th | |- ( z e. _V <-> z R z ) |
| 19 | 3 8 13 18 | iseri | |- R Er _V |