This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation involving equality of dependent classes A ( x ) and B ( y ) . (Contributed by NM, 17-Mar-2008) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqer.1 | ||
| eqer.2 | |||
| Assertion | eqer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.1 | ||
| 2 | eqer.2 | ||
| 3 | 2 | relopabiv | |
| 4 | id | ||
| 5 | 4 | eqcomd | |
| 6 | 1 2 | eqerlem | |
| 7 | 1 2 | eqerlem | |
| 8 | 5 6 7 | 3imtr4i | |
| 9 | eqtr | ||
| 10 | 1 2 | eqerlem | |
| 11 | 6 10 | anbi12i | |
| 12 | 1 2 | eqerlem | |
| 13 | 9 11 12 | 3imtr4i | |
| 14 | vex | ||
| 15 | eqid | ||
| 16 | 1 2 | eqerlem | |
| 17 | 15 16 | mpbir | |
| 18 | 14 17 | 2th | |
| 19 | 3 8 13 18 | iseri |