This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of eq0rdv . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 11-Jul-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eq0rdvALT.1 | ⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) | |
| Assertion | eq0rdvALT | ⊢ ( 𝜑 → 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0rdvALT.1 | ⊢ ( 𝜑 → ¬ 𝑥 ∈ 𝐴 ) | |
| 2 | 1 | pm2.21d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∅ ) ) |
| 3 | 2 | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ ∅ ) |
| 4 | ss0 | ⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝐴 = ∅ ) |