This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of eq0 . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eq0ALT | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) | |
| 2 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 3 | 2 | nbn | ⊢ ( ¬ 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅ ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ 𝐴 ) |