This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of eq0 . Shorter, but requiring df-clel , ax-8 . (Contributed by NM, 29-Aug-1993) Avoid ax-11 , ax-12 . (Revised by GG and Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eq0ALT | |- ( A = (/) <-> A. x -. x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( A = (/) <-> A. x ( x e. A <-> x e. (/) ) ) |
|
| 2 | noel | |- -. x e. (/) |
|
| 3 | 2 | nbn | |- ( -. x e. A <-> ( x e. A <-> x e. (/) ) ) |
| 4 | 3 | albii | |- ( A. x -. x e. A <-> A. x ( x e. A <-> x e. (/) ) ) |
| 5 | 1 4 | bitr4i | |- ( A = (/) <-> A. x -. x e. A ) |