This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)
|
|
Ref |
Expression |
|
Hypothesis |
ensn1.1 |
|
|
Assertion |
ensn1 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ensn1.1 |
|
| 2 |
|
snex |
|
| 3 |
|
f1oeq1 |
|
| 4 |
|
0ex |
|
| 5 |
1 4
|
f1osn |
|
| 6 |
2 3 5
|
ceqsexv2d |
|
| 7 |
|
snex |
|
| 8 |
|
snex |
|
| 9 |
|
breng |
|
| 10 |
7 8 9
|
mp2an |
|
| 11 |
6 10
|
mpbir |
|
| 12 |
|
df1o2 |
|
| 13 |
11 12
|
breqtrri |
|