This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | |
| 2 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 3 | 1 2 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → 𝐶 ∈ 𝑥 ) ) |
| 4 | tpid3g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 6 | inelcm | ⊢ ( ( 𝐶 ∈ 𝑥 ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐶 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) |
| 8 | 7 | expcom | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐶 ∈ 𝑥 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |
| 9 | 3 8 | syld | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ( 𝑥 ∩ { 𝐴 , 𝐵 , 𝐶 } ) ≠ ∅ ) ) |