This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for en3lp . (Contributed by Alan Sare, 28-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem2 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3lplem1 | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) ) |
|
| 2 | en3lplem1 | |- ( ( B e. C /\ C e. A /\ A e. B ) -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) |
|
| 3 | 2 | 3comr | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) |
| 4 | 3 | a1d | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = B -> ( x i^i { B , C , A } ) =/= (/) ) ) ) |
| 5 | tprot | |- { A , B , C } = { B , C , A } |
|
| 6 | 5 | ineq2i | |- ( x i^i { A , B , C } ) = ( x i^i { B , C , A } ) |
| 7 | 6 | neeq1i | |- ( ( x i^i { A , B , C } ) =/= (/) <-> ( x i^i { B , C , A } ) =/= (/) ) |
| 8 | 7 | bicomi | |- ( ( x i^i { B , C , A } ) =/= (/) <-> ( x i^i { A , B , C } ) =/= (/) ) |
| 9 | 4 8 | syl8ib | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = B -> ( x i^i { A , B , C } ) =/= (/) ) ) ) |
| 10 | jao | |- ( ( x = A -> ( x i^i { A , B , C } ) =/= (/) ) -> ( ( x = B -> ( x i^i { A , B , C } ) =/= (/) ) -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) ) |
|
| 11 | 1 9 10 | sylsyld | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) ) |
| 12 | 11 | imp | |- ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( ( x = A \/ x = B ) -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| 13 | en3lplem1 | |- ( ( C e. A /\ A e. B /\ B e. C ) -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) |
|
| 14 | 13 | 3coml | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) |
| 15 | 14 | a1d | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = C -> ( x i^i { C , A , B } ) =/= (/) ) ) ) |
| 16 | tprot | |- { C , A , B } = { A , B , C } |
|
| 17 | 16 | ineq2i | |- ( x i^i { C , A , B } ) = ( x i^i { A , B , C } ) |
| 18 | 17 | neeq1i | |- ( ( x i^i { C , A , B } ) =/= (/) <-> ( x i^i { A , B , C } ) =/= (/) ) |
| 19 | 15 18 | syl8ib | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = C -> ( x i^i { A , B , C } ) =/= (/) ) ) ) |
| 20 | 19 | imp | |- ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( x = C -> ( x i^i { A , B , C } ) =/= (/) ) ) |
| 21 | idd | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> x e. { A , B , C } ) ) |
|
| 22 | dftp2 | |- { A , B , C } = { x | ( x = A \/ x = B \/ x = C ) } |
|
| 23 | 22 | eleq2i | |- ( x e. { A , B , C } <-> x e. { x | ( x = A \/ x = B \/ x = C ) } ) |
| 24 | 21 23 | imbitrdi | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> x e. { x | ( x = A \/ x = B \/ x = C ) } ) ) |
| 25 | abid | |- ( x e. { x | ( x = A \/ x = B \/ x = C ) } <-> ( x = A \/ x = B \/ x = C ) ) |
|
| 26 | 24 25 | imbitrdi | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x = A \/ x = B \/ x = C ) ) ) |
| 27 | df-3or | |- ( ( x = A \/ x = B \/ x = C ) <-> ( ( x = A \/ x = B ) \/ x = C ) ) |
|
| 28 | 26 27 | imbitrdi | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( ( x = A \/ x = B ) \/ x = C ) ) ) |
| 29 | 28 | imp | |- ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( ( x = A \/ x = B ) \/ x = C ) ) |
| 30 | 12 20 29 | mpjaod | |- ( ( ( A e. B /\ B e. C /\ C e. A ) /\ x e. { A , B , C } ) -> ( x i^i { A , B , C } ) =/= (/) ) |
| 31 | 30 | ex | |- ( ( A e. B /\ B e. C /\ C e. A ) -> ( x e. { A , B , C } -> ( x i^i { A , B , C } ) =/= (/) ) ) |