This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011) (Proof shortened by Wolf Lammen, 27-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfregs2 | ⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfregs | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) | |
| 2 | incom | ⊢ ( 𝑥 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑥 ) | |
| 3 | 2 | eqeq1i | ⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 5 | 1 4 | sylib | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 6 | disj1 | ⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) | |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 8 | 5 7 | sylib | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ) |
| 9 | alinexa | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 11 | 8 10 | sylib | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 12 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 14 | notnotb | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ¬ ¬ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 | 13 15 | sylnibr | ⊢ ( 𝐴 ≠ ∅ → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |