This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 4-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1eqsn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 | ||
| 2 | eleq2 | ||
| 3 | elsni | ||
| 4 | 3 | sneqd | |
| 5 | 2 4 | biimtrdi | |
| 6 | 5 | imp | |
| 7 | eqtr3 | ||
| 8 | 6 7 | syldan | |
| 9 | 8 | ex | |
| 10 | 9 | exlimiv | |
| 11 | 1 10 | sylbi | |
| 12 | 11 | impcom |